A LEGENDRE TRANSFORM ON AN EXOTIC S^{3}

VITTORIO MARTINO

Abstract

We consider an exotic contact form α on S^{3} and we establish explicitly the existence of a non singular vector field v in $\operatorname{ker}(\alpha)$ such that the non-singular one-differential form $\beta(\cdot):=d \alpha(v, \cdot)$ is a contact form on S^{3} with the same orientation than α. In particular this means that a Legendre transform can be completed.

1. Introduction

In this paper we consider an exotic contact form α on S^{3}, introduced by J.GonzaloF.Varela in ([4], case $n=1$). It is, according to ([4]) an overtwisted contact structure and in Appendix A we can actually find an explicit disk D^{2} whose boundary is a Legendrian curve for α and $\operatorname{ker}(\alpha)$ has exactly one point of tangency to D^{2}. This contact structure is therefore not standard. The standard contact form α_{0} on S^{3} is a pull-back from the standard contact form on $P\left(\mathbb{R}^{3}\right)$, that is the unit sphere cotangent bundle of S^{2}; therefore it is equipped with its Liouville form. Legendre duality can be completed for this Liouville form. This Legendre transform can be viewed as the data of a vector field v in $\operatorname{ker}\left(\alpha_{0}\right)$ such that $\beta_{0}(\cdot):=d \alpha_{0}(v, \cdot)$ is a contact form with the same orientation than α_{0}.
This Legendre transform allows the transformation of a Hamiltonian problem on the cotangent sphere of S^{2} into a Lagrangian problem. This duality has been extended by A.Bahri-D.Bennequin in ([1]) to the more general framework of a contact form α on a three-dimensional compact orientable manifold without boundary M, leading

[^0]to a variational problem on a spaces of curves. In fact if one assumes that:
(i) $\exists v \in T M$, a non-vanishing vector field, such that $v \in \operatorname{ker}(\alpha)$
(ii) the non-singular one-differential form $\beta(\cdot):=d \alpha(v, \cdot)$ is a contact form on M with the same orientation than α
by defining the action functional
\[

$$
\begin{equation*}
J(x)=\int_{0}^{1} \alpha(\dot{x}) d t \tag{1}
\end{equation*}
$$

\]

on the subspace of the H^{1}-loops on M :

$$
C_{\beta}=\left\{x \in H^{1}\left(S^{1} ; M\right) \text { s.t. } \beta(\dot{x})=0 ; \alpha(\dot{x})=\text { strictly positive constant }\right\}
$$

If $\xi \in T M$ denotes the Reeb vector field of α, i.e.

$$
\begin{equation*}
\alpha(\xi)=1, \quad d \alpha(\xi, \cdot)=0 \tag{2}
\end{equation*}
$$

then the following result by A.Bahri-D.Bennequin holds ([1]):

Theorem 1.1. J is a C^{2} functional on C_{β} whose critical points are periodic orbits of ξ.

It is important to observe that this construction is "stable under perturbation", that is the same v can be used to complete Legendre duality for forms $\lambda \alpha$, with $\lambda \in C^{2}$ and $|\lambda-1|$ small.
In this work we establish the existence of such a v, which is given explicitly, for the contact structure of J.Gonzalo-F.Varela.

The organization of the paper is the following: in Section 2 we verify the hypothesis (i) giving explicitly the vector field v; in Section 3 we verify the hypothesis (ii); we conclude the paper with four appendices. In Appendix A, we provide an explicit disk that allows to recognize a known fact about the contact structure of α, namely that it is overtwisted. Appendix B is devoted to the graphs of some of the (complicated) functions that we use. Our v is C^{∞} outside of two curves. It is only C^{0} on S^{3}. We regularize it (with a very standard and straightforward regularizing procedure; v is
in fact C^{∞} in the direction of the Reeb vector field ξ) in Appendix C so that it is now C^{∞} and hypotheses (i) and (ii) are still satisfied. We then study in Appendix D the case $n>1$ of the contact forms/structures of Gonzalo-Varela ([4]). The definition of v extends, but hypothesis (ii) is not satisfied anymore by this extension. Another extension might work.

Acknowledgement I was introduced to this topic by Professor Abbas Bahri during the year I was visiting him at Rutgers University first and Courant Institute then, so it's a pleasure to thank him for all his help, support and valuable hints.

2. Verification of hypothesis (i)

From now on we consider S^{3} as embedded submanifold of \mathbb{R}^{4} where we will carry on most of our computation. Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$, by denoting

$$
r_{1}=x_{1}^{2}+x_{2}^{2}, \quad r_{2}=x_{3}^{2}+x_{4}^{2}
$$

then

$$
S^{3}=\left\{x \in \mathbb{R}^{4}: r_{1}+r_{2}=1\right\}
$$

and on S^{3} we take the non-standard (or exotic) contact form α defined by J.Gonzalo and F.Varela in ([4], case $n=1$):

$$
\alpha=-\left(A\left(x_{2} d x_{1}-x_{1} d x_{2}\right)+B\left(x_{4} d x_{3}-x_{3} d x_{4}\right)\right)
$$

where

$$
\theta=\frac{\pi}{4}+\pi r_{2}, \quad A=\cos \theta, \quad B=\sin \theta
$$

Now we compute $d \alpha$. If we denote by

$$
\widetilde{A}=A+\pi r_{1} B=\frac{\partial}{\partial r_{1}}\left(r_{1} A\right) \quad \widetilde{B}=B+\pi r_{2} A=\frac{\partial}{\partial r_{2}}\left(r_{2} B\right)
$$

then by a direct computation

$$
\begin{equation*}
d \alpha=2\left(\widetilde{A} d x_{1} \wedge d x_{2}+\widetilde{B} d x_{3} \wedge d x_{4}\right) \tag{3}
\end{equation*}
$$

Now, if

$$
\zeta=-\left(\widetilde{B}\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+\widetilde{A}\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right)
$$

one has $\zeta \in T\left(S^{3}\right)$ and it holds ${ }^{1}$

$$
\begin{equation*}
\alpha(\zeta)=A \widetilde{B} r_{1}+B \widetilde{A} r_{2}>0, \quad d \alpha(\zeta, \cdot)=0 \tag{4}
\end{equation*}
$$

Thus the Reeb vector field of α is

$$
\begin{equation*}
\xi=\frac{\zeta}{\alpha(\zeta)} \tag{5}
\end{equation*}
$$

Let us define the following non singular ${ }^{2}$ vector field in $T\left(S^{3}\right)$

$$
\begin{equation*}
T=-\left(A\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+B\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right) \tag{6}
\end{equation*}
$$

so one finds

$$
\begin{equation*}
\alpha(\cdot)=<T, \cdot> \tag{7}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the usual inner product in \mathbb{R}^{4}. In other words, a vector field is in the kernel of α if it is orthogonal to T.

Theorem 2.1. Let $R:=|T|$, where

$$
|T|^{2}=<T, T>=\alpha(T)=A^{2} r_{1}+B^{2} r_{2}>0
$$

By letting $C=A / R$ and $D=B / R$ let us define the vector field

$$
v=v_{1} \partial_{x_{1}}+v_{2} \partial_{x_{2}}+v_{3} \partial_{x_{3}}+v_{4} \partial_{x_{4}}
$$

[^1]with
\[

\left\{$$
\begin{array}{l}
v_{1}=x_{3} \frac{\left(x_{1}^{2}-D x_{2}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{4}\right)}{r_{1}}(1+D) \tag{8}\\
v_{2}=x_{4} \frac{\left(x_{2}^{2}-D x_{1}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{3}\right)}{r_{1}}(1+D) \\
v_{3}=-x_{1} \frac{\left(x_{3}^{2}+C x_{4}^{2}\right)}{r_{2}}-\frac{\left(x_{2} x_{3} x_{4}\right)}{r_{2}}(1-C) \\
v_{4}=-x_{2} \frac{\left(x_{4}^{2}+C x_{3}^{2}\right)}{r_{2}}-\frac{\left(x_{1} x_{3} x_{4}\right)}{r_{2}}(1-C)
\end{array}
$$\right.
\]

Then $v \in T\left(S^{3}\right),|v|=1$ and $v \in \operatorname{ker}(\alpha)$, so the condition (i) is satisfied.

Proof. We introduce the two objects

$$
\begin{equation*}
M=S^{3} \backslash\left(\left\{r_{1}=0\right\} \cup\left\{r_{2}=0\right\}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{2}=\left\{r_{1}=c_{1}, r_{2}=c_{2}, c_{1}+c_{2}=1, c_{1} \neq 0, c_{2} \neq 0\right\} \tag{10}
\end{equation*}
$$

So T^{2} are invariant tori for ξ (i.e $\xi \in T\left(T^{2}\right)$) and M is the sphere without the two degenerate tori (circles). Moreover, also the vector field T is tangent to T^{2}. We introduce the following two vector fields in $T(M)$

$$
\begin{gather*}
X=\frac{1}{\sqrt{r_{1} r_{2}}}\left(D r_{2}\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)-C r_{1}\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right) \tag{11}\\
Y=\frac{1}{\sqrt{r_{1} r_{2}}}\left(r_{2}\left(x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}\right)-r_{1}\left(x_{3} \partial_{x_{3}}+x_{4} \partial_{x_{4}}\right)\right) \tag{12}
\end{gather*}
$$

It holds

$$
|X|=|Y|=1
$$

thus X, Y are non degenerate on M. Moreover $X, Y \in \operatorname{ker}(\alpha)$, in particular $X \in$ $T\left(T^{2}\right)$ and $Y \in N\left(T^{2}\right)$ (the normal space to T^{2}). With the following coefficients

$$
\begin{equation*}
a=\frac{1}{\sqrt{r_{1} r_{2}}}\left(x_{1} x_{3}+x_{2} x_{4}\right), \quad b=\frac{1}{\sqrt{r_{1} r_{2}}}\left(x_{1} x_{4}-x_{2} x_{3}\right), \quad a^{2}+b^{2}=1 \tag{13}
\end{equation*}
$$

let us define

$$
\begin{equation*}
v=a Y+b X \tag{14}
\end{equation*}
$$

So $v \in \operatorname{ker}(\alpha),|v|=1$ and by a direct computation one finds the coefficients in (8). Let us remark that v is defined only on M. Since

$$
\lim _{r_{2} \rightarrow 0} C=-\lim _{r_{1} \rightarrow 0} D=1
$$

on $r_{1}=0$ one has

$$
v=x_{3} \partial_{x_{1}}+x_{4} \partial_{x_{2}}
$$

whereas on $r_{2}=0$ one finds

$$
v=-x_{1} \partial_{x_{3}}-x_{2} \partial_{x_{4}}
$$

so, by continuity, v is defined on the whole S^{3}.

Corollary 2.1. In the same way if we define the vector field

$$
w=w_{1} \partial_{x_{1}}+w_{2} \partial_{x_{2}}+w_{3} \partial_{x_{3}}+w_{4} \partial_{x_{4}}
$$

with

$$
\left\{\begin{array}{l}
w_{1}=-x_{4} \frac{\left(x_{1}^{2}-D x_{2}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{3}\right)}{r_{1}}(1+D) \tag{15}\\
w_{2}=x_{3} \frac{\left(x_{2}^{2}-D x_{1}^{2}\right)}{r_{1}}-\frac{\left(x_{1} x_{2} x_{4}\right)}{r_{1}}(1+D) \\
w_{3}=-x_{2} \frac{\left(x_{3}^{2}+C x_{4}^{2}\right)}{r_{2}}+\frac{\left(x_{1} x_{3} x_{4}\right)}{r_{2}}(1-C) \\
w_{4}=x_{1} \frac{\left(x_{4}^{2}+C x_{3}^{2}\right)}{r_{2}}-\frac{\left(x_{2} x_{3} x_{4}\right)}{r_{2}}(1-C)
\end{array}\right.
$$

Then $w \in T\left(S^{3}\right),|w|=1, w \in \operatorname{ker}(\alpha)$ and $w \perp v$.

Proof. The proof is the same as in (2.1), with

$$
\begin{equation*}
w=a X-b Y \tag{16}
\end{equation*}
$$

So $w \perp v, w \in \operatorname{ker}(\alpha),|w|=1$. Moreover on $r_{1}=0$ one has

$$
w=-x_{4} \partial_{x_{1}}+x_{3} \partial_{x_{2}}
$$

whereas on $r_{2}=0$ one finds

$$
w=-x_{2} \partial_{x_{3}}+x_{1} \partial_{x_{4}}
$$

Remark 2.1. We want to point out that the (coefficients of the) vector fields v, w are by construction only C^{0}.

3. Verification of hypothesis (ii)

Let us consider now the non-singular one-differential form

$$
\begin{equation*}
\beta(\cdot):=d \alpha(v, \cdot) \tag{17}
\end{equation*}
$$

By defining $h:=\alpha(\zeta)$, one has

$$
d \alpha(v, w)=d \alpha(a Y+b X, a X-b Y)=\left(a^{2}+b^{2}\right) d \alpha(Y, X)=d \alpha(Y, X)=-\frac{2}{|T|} h<0
$$

and

$$
\alpha \wedge d \alpha(\zeta, v, w)=h d \alpha(v, w)<0
$$

Moreover ${ }^{3}$

$$
\beta \wedge d \beta(\zeta, v, w)=\beta(w) d \beta(\zeta, v)=-d \alpha(v, w) d \alpha(v,[\zeta, v])
$$

Thus

$$
\begin{equation*}
\frac{\beta \wedge d \beta(\zeta, v, w)}{\alpha \wedge d \alpha(\zeta, v, w)}=\frac{-d \alpha(v,[\zeta, v])}{h} \tag{18}
\end{equation*}
$$

Theorem 3.1. $d \alpha(v,[\zeta, v])<0$, so the condition (ii) is satisfied.

[^2]Proof. We explicitly write some formulas. For $0<r_{1}<1$, one finds

$$
\begin{gathered}
Y\left(r_{1}\right)=2 \sqrt{r_{1} r_{2}}, \quad Y\left(r_{2}\right)=-2 \sqrt{r_{1} r_{2}}, \quad Y(\theta)=-2 \pi \sqrt{r_{1} r_{2}} \\
Y(A)=2 \pi \sqrt{r_{1} r_{2}} B, \quad Y(B)=-2 \pi \sqrt{r_{1} r_{2}} A \\
Y(\widetilde{A})=2 \pi \sqrt{r_{1} r_{2}}\left(2 B-\pi r_{1} A\right), \quad Y(\widetilde{B})=-2 \pi \sqrt{r_{1} r_{2}}\left(2 A-\pi r_{2} B\right) \\
\zeta(a)=-(\widetilde{A}-\widetilde{B}) b, \quad \zeta(b)=(\widetilde{A}-\widetilde{B}) a \\
{[\zeta, X]=0} \\
{[\zeta, Y]=Y(\widetilde{B})\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+Y(\widetilde{A})\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)}
\end{gathered}
$$

Moreover

$$
\begin{gathered}
{[\zeta, v]=[\zeta, a Y+b X]=\zeta(a) Y+\zeta(b) X+a[\zeta, Y]+b[\zeta, X]=} \\
=(\widetilde{A}-\widetilde{B}) w+a[\zeta, Y]=(\widetilde{A}-\widetilde{B}) w+a\left\{Y(\widetilde{B})\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+Y(\widetilde{A})\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right\}= \\
=(\widetilde{A}-\widetilde{B}) w+2 \pi\left(x_{1} x_{3}+x_{2} x_{4}\right)\left\{-\left(2 A-\pi r_{2} B\right)\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+\left(2 B-\pi r_{1} A\right)\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right\}
\end{gathered}
$$

and

$$
\begin{equation*}
\lim _{r_{1} \rightarrow 0}[\zeta, v]=\frac{\pi}{\sqrt{2}}\left(-x_{4} \partial_{x_{1}}+x_{3} \partial_{x_{2}}\right), \quad \lim _{r_{2} \rightarrow 0}[\zeta, v]=\frac{\pi}{\sqrt{2}}\left(-x_{2} \partial_{x_{3}}+x_{1} \partial_{x_{4}}\right) \tag{19}
\end{equation*}
$$

By computing

$$
\begin{gathered}
d \alpha(v,[\zeta, v])=d \alpha(v,(\widetilde{A}-\widetilde{B}) w+a[\zeta, Y])= \\
=-2(\widetilde{A}-\widetilde{B}) \frac{h}{R}+a d \alpha\left(a Y+b X,\left\{Y(\widetilde{B})\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+Y(\widetilde{A})\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right\}\right)
\end{gathered}
$$

and by letting

$$
K:=\widetilde{A}\left(\pi r_{2} B-2 A\right)+\widetilde{B}\left(\pi r_{1} A-2 B\right)
$$

one has

$$
d \alpha(v,[\zeta, v])=-2\left\{(\widetilde{A}-\widetilde{B}) \frac{h}{R}+2 \pi a^{2} r_{1} r_{2} K\right\}=:-2 Q
$$

$\operatorname{and}^{4} Q>0$.

[^3]
4. Appendix A

Let us consider on S^{3} the following disk

$$
D^{2}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \text { s.t. } x_{1}^{2}+x_{2}^{2} \leq \frac{3}{4}, x_{4} \geq 0, x_{3}=\varepsilon\right\}
$$

with $0<\varepsilon \ll 1$.
Then the boundary of D^{2} is a Legendrian curve for the contact form α (i.e. a curve in the kernel of the contact form), in fact

$$
\partial D^{2}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \text { s.t. } x_{1}^{2}+x_{2}^{2}=\frac{3}{4}, x_{4} \geq 0, x_{3}=\varepsilon\right\}
$$

thus $\left.\theta\right|_{\partial D^{2}}=\frac{\pi}{2},\left.A\right|_{\partial D^{2}}=0$ and $\alpha\left(\partial D^{2}\right)=0$. Now let us consider the identically zero form on S^{3}

$$
\omega=x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}+x_{4} d x_{4}
$$

that on D^{2} it reads as $x_{1} d x_{1}+x_{2} d x_{2}+x_{4} d x_{4}$. To find the points of tangency between $\operatorname{ker}(\alpha)$ and D^{2} we can see whether $\omega=\lambda \alpha$ for some non zero real λ. Then it should be

$$
\left\{\begin{array}{l}
A x_{1}=\lambda x_{2} \tag{20}\\
A x_{2}=-\lambda x_{2} \\
B \varepsilon=\lambda x_{4}
\end{array}\right.
$$

that means in particular

$$
A\left(x_{1}^{2}+x_{2}^{2}\right)=0
$$

Now if $A=0$ then $\lambda=0$, thus the only possible case is when $x_{1}^{2}+x_{2}^{2}=0$ and the only one point of tangency between $\operatorname{ker}(\alpha)$ and D^{2} is $\left(0,0, \varepsilon, \sqrt{1-\varepsilon^{2}}\right)$.

5. Appendix B

In this section we show the behavior (in particular the non-negativity) of some functions we used before. From now on let us put $x:=r_{2}$.
First we study $h:[0,1] \rightarrow \mathbb{R}$,

$$
h(x):=\alpha(\zeta(x))=A(x) \widetilde{B}(x)(1-x)+B(x) \widetilde{A}(x) x=\frac{\sin (2 \theta(x))}{2}+\pi\left(x-x^{2}\right)
$$

where $\theta(x)=\pi\left(\frac{1}{4}+x\right)$. Since h is symmetric respect to $x=1 / 2$, we can consider it only for $x \in[0,1 / 2]$. So:

$$
\begin{gathered}
h^{\prime}(x)=\pi(\cos (2 \theta(x))+1-2 x) \\
h^{\prime \prime}(x)=-2 \pi(\pi \sin (2 \theta(x))+1)=-2 \pi(\pi \cos (2 \pi x)+1)
\end{gathered}
$$

thus there exists c_{1}, with $1 / 4<c_{1}<1 / 2$ such that $h^{\prime \prime}$ is positive definite on $\left(c_{1}, 1 / 2\right)$ and h^{\prime} is increasing on $\left(c_{1}, 1 / 2\right)$. Moreover $h^{\prime}(1 / 2)=0$. Thus there exists c_{2}, with $0<c_{2}<c_{1}<1 / 2$ such that $h^{\prime}\left(c_{2}\right)=0$ and h is increasing on $\left(0, c_{2}\right)$. Finally, since $h(0)=1 / 2$, the minimum of h is $h(1 / 2)=-1 / 2+\pi / 4>0$ One has also

(a) h

(b) R
$R(x):=|T(x)|>0$. Indeed

$$
R^{2}(x)=|T(x)|^{2}=<T(x), T(x)>=\alpha(T(x))=A^{2}(x)(1-x)+B^{2}(x) x \geq 0
$$

and the quantities $A^{2}(x)(1-x)$ and $B^{2}(x) x$ cannot be zero simultaneously. We prove now that $Q(x)=(\widetilde{A}-\widetilde{B}) \frac{h}{R}+2 \pi a^{2} r_{1} r_{2} K>0$ for $x \in[0,1]$ showing the graphs of some function (a straightforward computation is possible, as for the function h, R, to localize critical points). If

$$
H(x):=(\widetilde{A}(x)-\widetilde{B}(x)) \frac{h(x)}{R(x)}
$$

Where K is positive definite then $Q>0$.
Otherwise, if we define

$$
G:=2 \pi r_{1} r_{2}, \quad G(x)=2 \pi\left(x-x^{2}\right)
$$

since $a^{2} \leq 1$, where K is negative definite

$$
2 \pi a^{2} r_{1} r_{2} K \geq G K
$$

Thus, where K is negative definite, it holds

$$
Q(x) \geq H(x)+G(x) K(x)=: W(x)
$$

and $Q>0$, for every $x \in[0,1]$.

6. Appendix C

In this section we want to regularize the C^{0} vector field v. The only problems are on the circles $r_{1}=0$ and $r_{2}=0$, otherwise v is a C^{∞} vector field. Let us consider the case $r_{1}=0$, the other one is similar. Let \mathcal{U} be a tubular neighborhood of $r_{1}=0$ and consider on \mathcal{U} a basis $\left\{v_{1}, v_{2}\right\}$ of $\operatorname{ker}(\alpha)$ with $v_{1}, v_{2} \in C^{\infty}$ (it is not difficult to find a local C^{∞} vector field). Then

$$
\begin{equation*}
v=a_{1} v_{1}+a_{2} v_{2} \tag{21}
\end{equation*}
$$

with $a_{1}, a_{2} \in C^{0}$. After a convolution with a quite standard mollifiers we can find $a_{1}^{\varepsilon}, a_{2}^{\varepsilon} \in C^{\infty}$ on \mathcal{U}, with $\varepsilon>0$. Thus we define the C^{∞} vector field

$$
\begin{equation*}
v^{\varepsilon}=a_{1}^{\varepsilon} v_{1}+a_{2}^{\varepsilon} v_{2} \tag{22}
\end{equation*}
$$

Now, by formulas (19) we already know that the vector field $[\zeta, v] \in C^{0}$, then using

$$
\left|\zeta\left(a_{1}^{\varepsilon}\right)-\zeta\left(a_{1}\right)\right|=o(1), \quad\left|\zeta\left(a_{2}^{\varepsilon}\right)-\zeta\left(a_{2}\right)\right|=o(1), \quad \text { as } \quad \varepsilon \rightarrow 0
$$

we have on \mathcal{U}

$$
[\zeta, v]=\lim _{\varepsilon \rightarrow 0}\left[\zeta, v^{\varepsilon}\right]
$$

Thus, in order to compute $\beta \wedge d \beta$, we can use that

$$
d \alpha(v,[\zeta, v])=\lim _{\varepsilon \rightarrow 0} d \alpha\left(v^{\varepsilon},\left[\zeta, v^{\varepsilon}\right]\right)
$$

7. Appendix D

The exotic contact form α we considered on S^{3}, actually is the first one of a family of non standard contact forms introduced by J.Gonzalo-F.Varela in ([4]). In fact, for every integer $n \geq 1$ let us define

$$
\begin{gathered}
\theta_{n}=\frac{\pi}{4}+n \pi r_{2}, \quad A_{n}=\cos \theta_{n}, \quad B_{n}=\sin \theta_{n} \\
\widetilde{A}_{n}=A_{n}+n \pi r_{1} B_{n}=\frac{\partial}{\partial r_{1}}\left(r_{1} A_{n}\right) \quad \widetilde{B}_{n}=B_{n}+n \pi r_{2} A_{n}=\frac{\partial}{\partial r_{2}}\left(r_{2} B_{n}\right)
\end{gathered}
$$

then ([4])

Theorem 7.1 (J.Gonzalo - F.Varela). The non-singular one-differential forms

$$
\alpha_{n}=-\left(A_{n}\left(x_{2} d x_{1}-x_{1} d x_{2}\right)+B_{n}\left(x_{4} d x_{3}-x_{3} d x_{4}\right)\right)
$$

are non-standard contact forms on S^{3}, for every $n \geq 1$

If

$$
\zeta_{n}=-\left(\widetilde{B}_{n}\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+\widetilde{A}_{n}\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right)
$$

one has

$$
h_{n}:=\alpha_{n}\left(\zeta_{n}\right)=A_{n} \widetilde{B}_{n} r_{1}+B_{n} \widetilde{A}_{n} r_{2}>0, \quad d \alpha_{n}\left(\zeta_{n}, \cdot\right)=0
$$

and then the Reeb vector field of α_{n} is

$$
\xi_{n}=\frac{\zeta_{n}}{h_{n}}
$$

Now, using the same arguments as in Section 2 we can see that if

$$
T_{n}=-\left(A_{n}\left(x_{2} \partial_{x_{1}}-x_{1} \partial_{x_{2}}\right)+B_{n}\left(x_{4} \partial_{x_{3}}-x_{3} \partial_{x_{4}}\right)\right)
$$

then one finds $\left|T_{n}\right|>0$ and it holds

Theorem 7.2. Let us define $C_{n}=A_{n} /\left|T_{n}\right|, D_{n}=B_{n} /\left|T_{n}\right|$.
Let $n \geq 1$ be odd.
If $v_{n}=v_{n}^{1} \partial_{x_{1}}+v_{n}^{2} \partial_{x_{2}}+v_{n}^{3} \partial_{x_{3}}+v_{n}^{4} \partial_{x_{4}}$, with

$$
\left\{\begin{array}{l}
v_{n}^{1}=x_{3} \frac{\left(x_{1}^{2}-D_{n} x_{2}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{4}\right)}{r_{1}}\left(1+D_{n}\right) \\
v_{n}^{2}=x_{4} \frac{\left(x_{2}^{2}-D_{n} x_{1}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{3}\right)}{r_{1}}\left(1+D_{n}\right) \\
v_{n}^{3}=-x_{1} \frac{\left(x_{3}^{2}+C_{n} x_{4}^{2}\right)}{r_{2}}-\frac{\left(x_{2} x_{3} x_{4}\right)}{r_{2}}\left(1-C_{n}\right) \\
v_{n}^{4}=-x_{2} \frac{\left(x_{4}^{2}+C_{n} x_{3}^{2}\right)}{r_{2}}-\frac{\left(x_{1} x_{3} x_{4}\right)}{r_{2}}\left(1-C_{n}\right)
\end{array}\right.
$$

Then v_{n} is a non singular C^{0} vector field in $\operatorname{ker}\left(\alpha_{n}\right)$ and $\left|v_{n}\right|=1$. Let $n \geq 1$ be even.

$$
\begin{aligned}
& \text { If } v_{n}=v_{n}^{1} \partial_{x_{1}}+v_{n}^{2} \partial_{x_{2}}+v_{n}^{3} \partial_{x_{3}}+v_{n}^{4} \partial_{x_{4}} \text {, with } \\
& \qquad\left\{\begin{array}{l}
v_{n}^{1}=x_{3} \frac{\left(x_{1}^{2}+D_{n} x_{2}^{2}\right)}{r_{1}}-\frac{\left(x_{1} x_{2} x_{4}\right)}{r_{1}}\left(1-D_{n}\right) \\
v_{n}^{2}=-x_{4} \frac{\left(x_{2}^{2}+D_{n} x_{1}^{2}\right)}{r_{1}}+\frac{\left(x_{1} x_{2} x_{3}\right)}{r_{1}}\left(1-D_{n}\right) \\
v_{n}^{3}=-x_{1} \frac{\left(x_{3}^{2}+C_{n} x_{4}^{2}\right)}{r_{2}}+\frac{\left(x_{2} x_{3} x_{4}\right)}{r_{2}}\left(1-C_{n}\right) \\
v_{n}^{4}=x_{2} \frac{\left(x_{4}^{2}+C_{n} x_{3}^{2}\right)}{r_{2}}-\frac{\left(x_{1} x_{3} x_{4}\right)}{r_{2}}\left(1-C_{n}\right)
\end{array}\right.
\end{aligned}
$$

Then v_{n} is a non singular C^{0} vector field in $\operatorname{ker}\left(\alpha_{n}\right)$ and $\left|v_{n}\right|=1$.

Thus the hypothesis (i) holds by using the previous v_{n}.
Putting $\beta_{n}(\cdot)=d \alpha_{n}\left(v_{n}, \cdot\right)$ then in order to compute $\beta_{n} \wedge d \beta_{n}$ we need to know the sign of $d \alpha_{n}\left(v_{n},\left[\zeta_{n}, v_{n}\right]\right)$. By a direct computation:
if $n \geq 1$ is odd then

$$
d \alpha_{n}\left(v_{n},\left[\zeta_{n}, v_{n}\right]\right)=-2\left\{\left(\widetilde{A}_{n}-\widetilde{B}_{n}\right) \frac{h_{n}}{R_{n}}+2 n \pi a^{2} r_{1} r_{2} K_{n}\right\}=:-2 Q_{n}
$$

where

$$
K_{n}:=\widetilde{A}_{n}\left(n \pi r_{2} B_{n}-2 A_{n}\right)+\widetilde{B}_{n}\left(n \pi r_{1} A_{n}-2 B_{n}\right), \quad a=\frac{1}{\sqrt{r_{1} r_{2}}}\left(x_{1} x_{3}+x_{2} x_{4}\right)
$$

whereas if $n \geq 1$ is even then

$$
d \alpha_{n}\left(v_{n},\left[\zeta_{n}, v_{n}\right]\right)=-2\left\{\left(\widetilde{A}_{n}+\widetilde{B}_{n}\right) \frac{h_{n}}{R_{n}}+2 n \pi a^{2} r_{1} r_{2} K_{n}\right\}=:-2 Q_{n}
$$

where

$$
K_{n}:=\widetilde{A}_{n}\left(n \pi r_{2} B_{n}-2 A_{n}\right)+\widetilde{B}_{n}\left(n \pi r_{1} A_{n}-2 B_{n}\right), \quad a=\frac{1}{\sqrt{r_{1} r_{2}}}\left(x_{1} x_{3}-x_{2} x_{4}\right)
$$

Now, for every $0<r_{1}<1$, there exist $x_{1}, x_{2}, x_{3}, x_{4}$ (even along the periodic orbits of $\left.\xi_{n}\right)$ such that $a^{2}=0$. In such a points the sign of $d \alpha_{n}\left(v_{n},\left[\zeta_{n}, v_{n}\right]\right)$ depends on $\widetilde{A}_{n} \pm \widetilde{B}_{n}$ and we find the following graphs Thus in general the hypothesis (ii) does

not hold in general. Anyway the existence of a "good" v_{n} (for which the hypotheses $(i),(i i)$ are satisfied) is not a priori excluded.

References

[1] A.Bahri, Pseudo-orbits of contact forms, Pitman Research Notes in Mathematics Series (173), Longman Scientific and Technical, Longman, London, 1988
[2] A.Bahri, Compactness, Adv. Nonlinear Stud. 8 , no. 3, pp. 465-568, 2008
[3] A.Bahri, Homology computation, Adv. Nonlinear Stud. 8 , no. 1, pp. 1-7, 2008
[4] J.Gonzalo, F.Varela, Modèles globaux des variétés de contact, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), Astérisque, no.107-108, pp. 163168, Soc. Math.France, Paris, 1983

[^0]: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S.Donato 5, 40126 Bologna, Italy. E-mail address: martino@dm.unibo.it.

[^1]: ${ }^{1}$ See Appendix B
 ${ }^{2}$ See Appendix B

[^2]: ${ }^{3}$ The vector field v is C^{0} so in order to compute $[\zeta, v]$ we need to regularize v, see Appendix C

[^3]: ${ }^{4}$ See Appendix B

