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Abstract. We consider an exotic contact form α on S3 and we establish ex-

plicitly the existence of a non singular vector field v in ker(α) such that the

non-singular one-differential form β(·) := dα(v, ·) is a contact form on S3 with the

same orientation than α. In particular this means that a Legendre transform can

be completed.

1. Introduction

In this paper we consider an exotic contact form α on S3, introduced by J.Gonzalo-

F.Varela in ([4], case n = 1). It is, according to ([4]) an overtwisted contact structure

and in Appendix A we can actually find an explicit disk D2 whose boundary is a

Legendrian curve for α and ker(α) has exactly one point of tangency to D2. This

contact structure is therefore not standard. The standard contact form α0 on S3

is a pull-back from the standard contact form on P (R3), that is the unit sphere

cotangent bundle of S2; therefore it is equipped with its Liouville form. Legendre

duality can be completed for this Liouville form. This Legendre transform can be

viewed as the data of a vector field v in ker(α0) such that β0(·) := dα0(v, ·) is a

contact form with the same orientation than α0.

This Legendre transform allows the transformation of a Hamiltonian problem on the

cotangent sphere of S2 into a Lagrangian problem. This duality has been extended

by A.Bahri-D.Bennequin in ([1]) to the more general framework of a contact form α

on a three-dimensional compact orientable manifold without boundary M , leading
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to a variational problem on a spaces of curves. In fact if one assumes that:

(i) ∃ v ∈ TM, a non-vanishing vector field, such that v ∈ ker(α)

(ii) the non-singular one-differential form β(·) := dα(v, ·) is a contact form

on M with the same orientation than α

by defining the action functional

(1) J(x) =

∫ 1

0

α(ẋ)dt

on the subspace of the H1-loops on M :

Cβ = {x ∈ H1(S1; M) s.t. β(ẋ) = 0; α(ẋ) = strictly positive constant}

If ξ ∈ TM denotes the Reeb vector field of α, i.e.

(2) α(ξ) = 1, dα(ξ, ·) = 0

then the following result by A.Bahri-D.Bennequin holds ([1]):

Theorem 1.1. J is a C2 functional on Cβ whose critical points are periodic orbits

of ξ.

It is important to observe that this construction is “stable under perturbation”, that

is the same v can be used to complete Legendre duality for forms λα, with λ ∈ C2

and |λ− 1| small.

In this work we establish the existence of such a v, which is given explicitly, for the

contact structure of J.Gonzalo-F.Varela.

The organization of the paper is the following: in Section 2 we verify the hypothesis

(i) giving explicitly the vector field v; in Section 3 we verify the hypothesis (ii); we

conclude the paper with four appendices. In Appendix A, we provide an explicit disk

that allows to recognize a known fact about the contact structure of α, namely that

it is overtwisted. Appendix B is devoted to the graphs of some of the (complicated)

functions that we use. Our v is C∞ outside of two curves. It is only C0 on S3. We

regularize it (with a very standard and straightforward regularizing procedure; v is
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in fact C∞ in the direction of the Reeb vector field ξ) in Appendix C so that it is now

C∞ and hypotheses (i) and (ii) are still satisfied. We then study in Appendix D the

case n > 1 of the contact forms/structures of Gonzalo-Varela ([4]). The definition

of v extends, but hypothesis (ii) is not satisfied anymore by this extension. Another

extension might work.

Acknowledgement I was introduced to this topic by Professor Abbas Bahri during

the year I was visiting him at Rutgers University first and Courant Institute then,

so it’s a pleasure to thank him for all his help, support and valuable hints.

2. Verification of hypothesis (i)

From now on we consider S3 as embedded submanifold of R4 where we will carry

on most of our computation. Let x = (x1, x2, x3, x4) ∈ R4, by denoting

r1 = x2
1 + x2

2, r2 = x2
3 + x2

4

then

S3 = {x ∈ R4 : r1 + r2 = 1}
and on S3 we take the non-standard (or exotic) contact form α defined by J.Gonzalo

and F.Varela in ([4], case n = 1):

α = −
(
A(x2dx1 − x1dx2) + B(x4dx3 − x3dx4)

)

where

θ =
π

4
+ πr2, A = cos θ, B = sin θ

Now we compute dα. If we denote by

Ã = A + πr1B =
∂

∂r1

(r1A) B̃ = B + πr2A =
∂

∂r2

(r2B)

then by a direct computation

(3) dα = 2
(
Ãdx1 ∧ dx2 + B̃dx3 ∧ dx4

)

Now, if

ζ = −
(
B̃(x2∂x1 − x1∂x2) + Ã(x4∂x3 − x3∂x4)

)



A LEGENDRE TRANSFORM ON AN EXOTIC S3 4

one has ζ ∈ T (S3) and it holds 1

(4) α(ζ) = AB̃r1 + BÃr2 > 0, dα(ζ, ·) = 0

Thus the Reeb vector field of α is

(5) ξ =
ζ

α(ζ)

Let us define the following non singular2 vector field in T (S3)

(6) T = −
(
A(x2∂x1 − x1∂x2) + B(x4∂x3 − x3∂x4)

)

so one finds

(7) α(·) =< T, · >

where < ·, · > is the usual inner product in R4. In other words, a vector field is in

the kernel of α if it is orthogonal to T .

Theorem 2.1. Let R := |T |, where

|T |2 =< T, T >= α(T ) = A2r1 + B2r2 > 0

By letting C = A/R and D = B/R let us define the vector field

v = v1∂x1 + v2∂x2 + v3∂x3 + v4∂x4

1See Appendix B
2See Appendix B
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with

(8)





v1 = x3
(x2

1 −Dx2
2)

r1

+
(x1x2x4)

r1

(1 + D)

v2 = x4
(x2

2 −Dx2
1)

r1

+
(x1x2x3)

r1

(1 + D)

v3 = −x1
(x2

3 + Cx2
4)

r2

− (x2x3x4)

r2

(1− C)

v4 = −x2
(x2

4 + Cx2
3)

r2

− (x1x3x4)

r2

(1− C)

Then v ∈ T (S3), |v| = 1 and v ∈ ker(α), so the condition (i) is satisfied.

Proof. We introduce the two objects

(9) M = S3 \ ({r1 = 0} ∪ {r2 = 0})

and

(10) T 2 = {r1 = c1, r2 = c2, c1 + c2 = 1, c1 6= 0, c2 6= 0}

So T 2 are invariant tori for ξ (i.e ξ ∈ T (T 2)) and M is the sphere without the two

degenerate tori (circles). Moreover, also the vector field T is tangent to T 2. We

introduce the following two vector fields in T (M)

(11) X =
1√
r1r2

(
Dr2(x2∂x1 − x1∂x2)− Cr1(x4∂x3 − x3∂x4)

)

(12) Y =
1√
r1r2

(
r2(x1∂x1 + x2∂x2)− r1(x3∂x3 + x4∂x4)

)

It holds

|X| = |Y | = 1

thus X,Y are non degenerate on M . Moreover X,Y ∈ ker(α), in particular X ∈
T (T 2) and Y ∈ N(T 2) (the normal space to T 2). With the following coefficients

(13) a =
1√
r1r2

(x1x3 + x2x4), b =
1√
r1r2

(x1x4 − x2x3), a2 + b2 = 1
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let us define

(14) v = aY + bX

So v ∈ ker(α), |v| = 1 and by a direct computation one finds the coefficients in (8).

Let us remark that v is defined only on M . Since

lim
r2→0

C = − lim
r1→0

D = 1

on r1 = 0 one has

v = x3∂x1 + x4∂x2

whereas on r2 = 0 one finds

v = −x1∂x3 − x2∂x4

so, by continuity, v is defined on the whole S3. ¤

Corollary 2.1. In the same way if we define the vector field

w = w1∂x1 + w2∂x2 + w3∂x3 + w4∂x4

with

(15)





w1 = −x4
(x2

1 −Dx2
2)

r1

+
(x1x2x3)

r1

(1 + D)

w2 = x3
(x2

2 −Dx2
1)

r1

− (x1x2x4)

r1

(1 + D)

w3 = −x2
(x2

3 + Cx2
4)

r2

+
(x1x3x4)

r2

(1− C)

w4 = x1
(x2

4 + Cx2
3)

r2

− (x2x3x4)

r2

(1− C)

Then w ∈ T (S3), |w| = 1, w ∈ ker(α) and w ⊥ v.

Proof. The proof is the same as in (2.1), with

(16) w = aX − bY
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So w ⊥ v, w ∈ ker(α), |w| = 1. Moreover on r1 = 0 one has

w = −x4∂x1 + x3∂x2

whereas on r2 = 0 one finds

w = −x2∂x3 + x1∂x4

¤

Remark 2.1. We want to point out that the (coefficients of the) vector fields v, w

are by construction only C0.

3. Verification of hypothesis (ii)

Let us consider now the non-singular one-differential form

(17) β(·) := dα(v, ·)

By defining h := α(ζ), one has

dα(v, w) = dα(aY + bX, aX − bY ) = (a2 + b2)dα(Y, X) = dα(Y, X) = − 2

|T |h < 0

and

α ∧ dα(ζ, v, w) = hdα(v, w) < 0

Moreover3

β ∧ dβ(ζ, v, w) = β(w)dβ(ζ, v) = −dα(v, w)dα(v, [ζ, v])

Thus

(18)
β ∧ dβ(ζ, v, w)

α ∧ dα(ζ, v, w)
=
−dα(v, [ζ, v])

h

Theorem 3.1. dα(v, [ζ, v]) < 0, so the condition (ii) is satisfied.

3 The vector field v is C0 so in order to compute [ζ, v] we need to regularize v, see Appendix C
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Proof. We explicitly write some formulas. For 0 < r1 < 1, one finds

Y (r1) = 2
√

r1r2, Y (r2) = −2
√

r1r2, Y (θ) = −2π
√

r1r2

Y (A) = 2π
√

r1r2B, Y (B) = −2π
√

r1r2A

Y (Ã) = 2π
√

r1r2(2B − πr1A), Y (B̃) = −2π
√

r1r2(2A− πr2B)

ζ(a) = −(Ã− B̃)b, ζ(b) = (Ã− B̃)a

[ζ,X] = 0

[ζ, Y ] = Y (B̃)(x2∂x1 − x1∂x2) + Y (Ã)(x4∂x3 − x3∂x4)

Moreover

[ζ, v] = [ζ, aY + bX] = ζ(a)Y + ζ(b)X + a[ζ, Y ] + b[ζ,X] =

= (Ã−B̃)w+a[ζ, Y ] = (Ã−B̃)w+a{Y (B̃)(x2∂x1−x1∂x2)+Y (Ã)(x4∂x3−x3∂x4)} =

= (Ã−B̃)w+2π(x1x3+x2x4){−(2A−πr2B)(x2∂x1−x1∂x2)+(2B−πr1A)(x4∂x3−x3∂x4)}

and

(19) lim
r1→0

[ζ, v] =
π√
2
(−x4∂x1 + x3∂x2), lim

r2→0
[ζ, v] =

π√
2
(−x2∂x3 + x1∂x4)

By computing

dα(v, [ζ, v]) = dα(v, (Ã− B̃)w + a[ζ, Y ]) =

= −2(Ã− B̃)
h

R
+ adα(aY + bX, {Y (B̃)(x2∂x1 − x1∂x2) + Y (Ã)(x4∂x3 − x3∂x4)})

and by letting

K := Ã(πr2B − 2A) + B̃(πr1A− 2B)

one has

dα(v, [ζ, v]) = −2
{

(Ã− B̃)
h

R
+ 2πa2r1r2K

}
=: −2Q

and4 Q > 0. ¤

4See Appendix B
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4. Appendix A

Let us consider on S3 the following disk

D2 := {(x1, x2, x3, x4) ∈ R4 s.t. x2
1 + x2

2 ≤
3

4
, x4 ≥ 0, x3 = ε}

with 0 < ε ¿ 1.

Then the boundary of D2 is a Legendrian curve for the contact form α (i.e. a curve

in the kernel of the contact form), in fact

∂D2 := {(x1, x2, x3, x4) ∈ R4 s.t. x2
1 + x2

2 =
3

4
, x4 ≥ 0, x3 = ε}

thus θ|∂D2 = π
2
, A|∂D2 = 0 and α(∂D2) = 0. Now let us consider the identically zero

form on S3

ω = x1dx1 + x2dx2 + x3dx3 + x4dx4

that on D2 it reads as x1dx1+x2dx2+x4dx4. To find the points of tangency between

ker(α) and D2 we can see whether ω = λα for some non zero real λ. Then it should

be

(20)





Ax1 = λx2

Ax2 = −λx2

Bε = λx4

that means in particular

A(x2
1 + x2

2) = 0

Now if A = 0 then λ = 0, thus the only possible case is when x2
1 + x2

2 = 0 and the

only one point of tangency between ker(α) and D2 is (0, 0, ε,
√

1− ε2).

5. Appendix B

In this section we show the behavior (in particular the non-negativity) of some

functions we used before. From now on let us put x := r2.

First we study h : [0, 1] → R,

h(x) := α(ζ(x)) = A(x)B̃(x)(1− x) + B(x)Ã(x)x =
sin(2θ(x))

2
+ π(x− x2)
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where θ(x) = π(1
4

+ x). Since h is symmetric respect to x = 1/2, we can consider it

only for x ∈ [0, 1/2]. So:

h′(x) = π(cos(2θ(x)) + 1− 2x)

h′′(x) = −2π(π sin(2θ(x)) + 1) = −2π(π cos(2πx) + 1)

thus there exists c1, with 1/4 < c1 < 1/2 such that h′′ is positive definite on (c1, 1/2)

and h′ is increasing on (c1, 1/2). Moreover h′(1/2) = 0. Thus there exists c2, with

0 < c2 < c1 < 1/2 such that h′(c2) = 0 and h is increasing on (0, c2). Finally,

since h(0) = 1/2, the minimum of h is h(1/2) = −1/2 + π/4 > 0 One has also

0.2 0.4 0.6 0.8 1
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(a) h

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) R

R(x) := |T (x)| > 0. Indeed

R2(x) = |T (x)|2 =< T (x), T (x) >= α(T (x)) = A2(x)(1− x) + B2(x)x ≥ 0

and the quantities A2(x)(1 − x) and B2(x)x cannot be zero simultaneously. We

prove now that Q(x) = (Ã− B̃) h
R

+2πa2r1r2K > 0 for x ∈ [0, 1] showing the graphs

of some function (a straightforward computation is possible, as for the function h,R,

to localize critical points). If

H(x) := (Ã(x)− B̃(x))
h(x)

R(x)

Where K is positive definite then Q > 0.

Otherwise, if we define

G := 2πr1r2, G(x) = 2π(x− x2)
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0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

(c) Ã− B̃
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0.5

1

1.5

2

2.5

(d) H

since a2 ≤ 1, where K is negative definite

2πa2r1r2K ≥ GK

Thus, where K is negative definite, it holds

Q(x) ≥ H(x) + G(x)K(x) =: W (x)

and Q > 0, for every x ∈ [0, 1].
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1
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(e) K
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1

1.5

2

2.5

3

3.5

(f) W

6. Appendix C

In this section we want to regularize the C0 vector field v. The only problems are

on the circles r1 = 0 and r2 = 0, otherwise v is a C∞ vector field. Let us consider

the case r1 = 0, the other one is similar. Let U be a tubular neighborhood of r1 = 0

and consider on U a basis {v1, v2} of ker(α) with v1, v2 ∈ C∞ (it is not difficult to

find a local C∞ vector field). Then

(21) v = a1v1 + a2v2
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with a1, a2 ∈ C0. After a convolution with a quite standard mollifiers we can find

aε
1, a

ε
2 ∈ C∞ on U , with ε > 0. Thus we define the C∞ vector field

(22) vε = aε
1v1 + aε

2v2

Now, by formulas (19) we already know that the vector field [ζ, v] ∈ C0, then using

|ζ(aε
1)− ζ(a1)| = o(1), |ζ(aε

2)− ζ(a2)| = o(1), as ε → 0

we have on U
[ζ, v] = lim

ε→0
[ζ, vε]

Thus, in order to compute β ∧ dβ, we can use that

dα(v, [ζ, v]) = lim
ε→0

dα(vε, [ζ, vε])

7. Appendix D

The exotic contact form α we considered on S3, actually is the first one of a family

of non standard contact forms introduced by J.Gonzalo-F.Varela in ([4]). In fact,

for every integer n ≥ 1 let us define

θn =
π

4
+ nπr2, An = cos θn, Bn = sin θn

Ãn = An + nπr1Bn =
∂

∂r1

(r1An) B̃n = Bn + nπr2An =
∂

∂r2

(r2Bn)

then ([4])

Theorem 7.1 (J.Gonzalo - F.Varela). The non-singular one-differential forms

αn = −
(
An(x2dx1 − x1dx2) + Bn(x4dx3 − x3dx4)

)

are non-standard contact forms on S3, for every n ≥ 1

If

ζn = −
(
B̃n(x2∂x1 − x1∂x2) + Ãn(x4∂x3 − x3∂x4)

)

one has

hn := αn(ζn) = AnB̃nr1 + BnÃnr2 > 0, dαn(ζn, ·) = 0
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and then the Reeb vector field of αn is

ξn =
ζn

hn

Now, using the same arguments as in Section 2 we can see that if

Tn = −
(
An(x2∂x1 − x1∂x2) + Bn(x4∂x3 − x3∂x4)

)

then one finds |Tn| > 0 and it holds

Theorem 7.2. Let us define Cn = An/|Tn|, Dn = Bn/|Tn|.
Let n ≥ 1 be odd.

If vn = v1
n∂x1 + v2

n∂x2 + v3
n∂x3 + v4

n∂x4, with





v1
n = x3

(x2
1 −Dnx

2
2)

r1

+
(x1x2x4)

r1

(1 + Dn)

v2
n = x4

(x2
2 −Dnx

2
1)

r1

+
(x1x2x3)

r1

(1 + Dn)

v3
n = −x1

(x2
3 + Cnx

2
4)

r2

− (x2x3x4)

r2

(1− Cn)

v4
n = −x2

(x2
4 + Cnx

2
3)

r2

− (x1x3x4)

r2

(1− Cn)

Then vn is a non singular C0 vector field in ker(αn) and |vn| = 1.

Let n ≥ 1 be even.
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If vn = v1
n∂x1 + v2

n∂x2 + v3
n∂x3 + v4

n∂x4, with




v1
n = x3

(x2
1 + Dnx

2
2)

r1

− (x1x2x4)

r1

(1−Dn)

v2
n = −x4

(x2
2 + Dnx2

1)

r1

+
(x1x2x3)

r1

(1−Dn)

v3
n = −x1

(x2
3 + Cnx2

4)

r2

+
(x2x3x4)

r2

(1− Cn)

v4
n = x2

(x2
4 + Cnx2

3)

r2

− (x1x3x4)

r2

(1− Cn)

Then vn is a non singular C0 vector field in ker(αn) and |vn| = 1.

Thus the hypothesis (i) holds by using the previous vn.

Putting βn(·) = dαn(vn, ·) then in order to compute βn ∧ dβn we need to know the

sign of dαn(vn, [ζn, vn]). By a direct computation:

if n ≥ 1 is odd then

dαn(vn, [ζn, vn]) = −2
{

(Ãn − B̃n)
hn

Rn

+ 2nπa2r1r2Kn

}
=: −2Qn

where

Kn := Ãn(nπr2Bn − 2An) + B̃n(nπr1An − 2Bn), a =
1√
r1r2

(x1x3 + x2x4)

whereas if n ≥ 1 is even then

dαn(vn, [ζn, vn]) = −2
{

(Ãn + B̃n)
hn

Rn

+ 2nπa2r1r2Kn

}
=: −2Qn

where

Kn := Ãn(nπr2Bn − 2An) + B̃n(nπr1An − 2Bn), a =
1√
r1r2

(x1x3 − x2x4)

Now, for every 0 < r1 < 1, there exist x1, x2, x3, x4 (even along the periodic orbits

of ξn) such that a2 = 0. In such a points the sign of dαn(vn, [ζn, vn]) depends on

Ãn ± B̃n and we find the following graphs Thus in general the hypothesis (ii) does
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(g) Ãn − B̃n, n = 3
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(h) Ãn − B̃n, n = 5
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(i) Ãn + B̃n, n = 2
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(j) Ãn + B̃n, n = 4

not hold in general. Anyway the existence of a ”good” vn (for which the hypotheses

(i), (ii) are satisfied) is not a priori excluded.
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Math.France, Paris, 1983


